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Abstract: New values of parameters a and b are proposed for the CIE system of mesopic 
photometry MES2 [CIE Publication 191:2010], because from the original values this model 
may have no solution or multi-solutions. From the new values of parameters a and b it is 
shown that the CIE MES2 system has a unique solution. The difference however, between the 
original and the new values of parameters a and b is very small and the changes do not affect 
previous conclusions based on the MES2 model. To compute such a solution, we propose a 
Bisection-Newton method which exhibits fast convergence (8 iterations in the worst case), 
and improves the fixed-point method recommended by the CIE MES2 system, which has 
convergence problems for high values of the photopic luminance and very high values of the 
scotopic/photopic ratio. Comparative results for the fixed-point method, the Bisection 
method, the Newton method, and the Bisection-Newton method, in terms of the number of 
iterations necessary for convergence and the computation time used, are reported. 
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1. Introduction 
Mesopic vision is defined as vision intermediate between photopic and scotopic vision [1]. In 
mesopic vision, both the cones and rods are active; photopic vision, on the other hand, is 
dominated by cone activity and, in scotopic vision only the rods are active. Mesopic lighting 
applications are those for which our visual system is operating in a mesopic state, i.e. where 
both rods and cones contribute to visual functions. However, it is not straightforward to 
determine whether and how this condition is satisfied in any given practical situation [2]. For 
example, one important application of mesopic vision is road and street lighting for drivers, 
motorcyclists, cyclists and pedestrians, since the visual environment in night-time traffic 
conditions falls largely in the mesopic region. 

The current CIE system for mesopic photometry, the CIE MES2 system [3], was first 
published in 2010. It is in fact an intermediate solution between the USP system published by 
Rea et al. [4] in 2004 and the MOVE system published by Goodman et al. [5] in 2007. The 
CIE MES2 system defines the spectral luminous efficiency function for mesopic photometry, 

( )mesV λ , in the range from 20.005 mcd − to 25.0 mcd − , as a convex linear combination: 

 ( ) ( ) ( ) ( ) ( )1 for 0 1mesM m V mV m V mλ λ λ= + − ≤ ≤′  (1) 

where ( )M m is a normalizing constant such that ( )mesV λ  attains a maximum value of 1, 

( )V λ and ( )'V λ are the CIE spectral luminous efficiency functions [6] for photopic and 
scotopic vision, respectively, and m is the so-called coefficient of adaptation, which value 
depends on the visual adaptation conditions, in such a way that when 0m = , 

( ) ( )mesV Vλ λ′= , and when 1m = , ( ) ( )mesV Vλ λ= . For a given light source with a spectral 

radiance ( )E λ  (in 2 1 1Wm sr nm− − − ), assuming 380-780 nm as the visible range, the mesopic 
luminance, mesL , is given by [3, 6] 

 
( ) ( ) ( )

780

0 380

683
mes mes

mes

L V E d
V

λ λ λ
λ

= ∫  (2) 

where 0 555 nmλ = , and the photopic and scotopic luminances, pL and sL , are defined as 

 ( ) ( ) ( ) ( )
780 780

380 380

683 , 1700 ' .p sL V E d L V E dλ λ λ λ λ λ= =∫ ∫  (3) 

Since 0( ) 1V λ = , if we define 

 0
683'( ) ,

1699
C V λ= =  (4) 

then, the mesopic luminance [3] can be obtained from 

 
( )
( )
1

   .
1

p s
mes

mL m L C
L

m m C
+ −

=
+ −

 (5) 

In addition, the CIE MES2 system [3] provides the following relationship between the 
mesopic luminance, mesL , and the coefficient of adaptation m : 

 ( )10  mesm a b log L= +    ,  (6) 

with 
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 0.7670, 0.3334 .a b= =  (7) 
From Eq. (5), when 0m = , mes sL L=  ; and when 1m = , mes pL L= . Hence, for continuity of 

the luminance scale from scotopic via mesopic to photopic vision, we should have: 

 2If 0.005 m then m 0 ands mes sL cd L L−≤ = =  (8) 

 2If 5.0 m then m 1 and ,p mes pL cd L L−≥ = =    (9) 

with the mesopic range being fixed as: 

 2 20.005 m and 5.0 m .s pL cd L cd− −> <  (10) 
The CIE MES2 system recommends [3] that the coefficient of adaptation m be 

determined using a fixed-point iteration method [7] based on Eqs. (5)-(7). Specifically, it is 
indicated to start from photopic and scotopic luminance values, pL and sL , 
assuming 0 0.5m = , and then repeat the following Eqs. (11) and (12) until ‘convergence’: 

 
( )
( ),

1
   ,

1
n p n s

mes n
n n

m L m L C
L

m m C
+ −

=
+ −

 (11) 

 ( )1 10 ,* .n mes nm a b log L+ = +  (12) 

In this algorithm ‘convergence’ means that when two consecutive values nm  and 1nm +  are 
close enough, i.e. when 

 1| | ,n nm m ε+ − ≤  (13) 

where ε  is a very small fixed tolerance, the iteration is stopped, and 1nm +  is accepted as a 
solution for m . In computations in the current paper we will use 510 .ε −=  

Since ( )/s s p pL L L L= , CIE MES2 provides examples to show how the above fixed-point 

iteration method works using different inputs for pL  and the ratio ( )/s pL L , abbreviated as 

/S P  from now on [3]. Specifically, it is reported in [3] that for any fixed value of pL , mesL  
increases with an increase of the ratio /S P , which agrees with experimental results [8]. 
However, we think that some questions related to the CIE MES2 system have not yet been 
addressed. For example: 1) Do Eqs. (5)-(7) determine a unique solution for m  when Eq. (10) 
is satisfied? 2) Does the fixed-point iteration method in Eqs. (11)-(13) converge when Eqs. 
(5)–(7) determine a unique solution for m ? The current paper investigates these two 
questions. From our results, a new Bisection-Newton method is proposed to predict the value 
of the coefficient of adaptation, m , and the mesopic luminance, mesL . Numerical results show 
that the Bisection-Newton method always converges, and provides a better solution than the 
fixed-point iteration method currently recommended by the CIE MES2 system [3]. 

2. Do Eqs. (5)-(7) determine a unique solution for the adaptation coefficient? 
Firstly, it follows from Eq. (6) that 

 ( )/10 .m a b
mesL −=  (14) 

Thus, if we let 

 ( ) ( )
( )
1

10 ,
1

m a
p s b

mL m L C
F m

m m C

−+ −
= −

+ −
 (15) 
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it is clear that the question becomes: Does the function ( ) 0F m =  have a unique solution m  
between 0 and 1 when Eq. (10) is satisfied? From Eq. (15) we note that 

 ( ) ( ) ( )1 //0 10 , 1 .10 a ba b
s pF L F L −−= − = −    (16) 

Thus, when 

 ( )1 //10 and 10 a ba b
s pL L −−> <   (17) 

we have 

 ( ) ( )
1

0 10 0 and 1 10 0 .
a a
b b

s pF L F L
−

−
= − > = − <  (18) 

Therefore, from Bolzano’s theorem [9], ( )  0F m =  has at least one solution when Eq. (18) 
is satisfied. Note that conditions (10) and (17) are approximately the same, if the computation 
is carried out by hand, since from Eq. (7) 

 
1

/10 0.005006 0.005 and 10 4.998736 5.0 .
a

a b b
−

− ≈ ≈ ≈ ≈  (19) 

However, when using a computer, the two conditions (10) and (17) are different and this can 
have a harmful effect as shown by the examples in the next subsection. 

2.1 Examples with no solution or multi solutions for F(m) = 0 

First, let’s assume 4.999pL = , and ( )/ 4.999sL S P= . If, for example, ( )/ 0.5S P = , from 

Eq. (18) we have ( ) ( )0 0 and 1 0F F> > , and therefore we are not certain if ( ) 0F m =  has a 

solution or not. In fact, in this case ( ) 0F m >  for all m  values between 0 and 1, as shown in 

Fig. 1, where the cases with ( )/ 1, 2 and 3S P =  have also been plotted. Thus, in all these 

cases ( ) 0F m =  has no solution, even though condition in Eq. (10) is satisfied. 
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S/P=3.0

 

Fig. 1. For 4.999pL =  and ( )/ 4.999sL S P= , with 

/ 0.5, 1.0, 2.0, and 3.0S P = , ( ) 0F m > for 0 1m≤ ≤ . 

Second, let’s assume 0.005004sL =  and, for example, 3pL = . In this case, from Eq. 

(18), we have ( ) 60 1.65 .10F −= −  and ( )1 1.999F = − . Because ( ) ( )0 0 and 1 0F F< < , 

once again we are not certain if ( ) 0F m = has a solution or not [9]. Since 0.005004sL =  is 
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very close to 0.005, we expect m  to be close to zero, and ( ) 60 1.65 .10F −= −  confirms this is 
the case. However, as shown by the green curve in Fig. 2, there is another solution with an 
unexpected high m  value (approximately, 0.92116m = ). In fact, in this case, the fixed-point 
iteration method recommended by CIE [3] also gives a solution of 0.92116m =  and 

2.9mesL = , which is certainly a wrong solution. Note that in this example Eq. (10) holds. 
Similar results can be found with 0.005004sL =  and 1, 2 and 4pL = , as shown by the 
remaining curves plotted in Fig. 2. 
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Fig. 2. For 0.005004sL =  and 1, 2 ,3 and 4pL = , the function ( ) 0F m =  has 

wrong solutions with high m values.. 

2.2 Theorem of existence of an unique solution for F(m) = 0 within the mesopic range 

The examples in subsection 2.1 do show that the parameters a  and b  as defined by CIE in 
Eq. (7) have problems. In order to redefine these parameters, we note that, if ( ) 0F m =  has a 
unique solution m  between 0 and 1, then when m  is small, mesL  should be close to 0.005, 
and when 0m = , 0.005mesL = . Similarly, when m  is high, mesL  should be close to 5, and 
when 1m = , 5mesL = . Thus, from Eq. (14), the parameters a  and b  should satisfy 

 ( )1 //0.005 0 10 ,1 , 5 a ba b −−= =       (20) 

and by solving Eqs. (20) we have 

 
( )10 51       , 1 .

3 3
log

b a= = −      (21) 

Although a  and b  as defined by Eq. (21) are not much different from a  and b  as 
defined by Eq. (7), the examples in subsection 2.1 and the discussion below show that it is 
better to use the set defined by Eq. (21). Therefore, from now on, we will assume the MES2 
model with a  and b  as defined by Eq. (21). The difference however, between the original 
and the new values of the parameters a and b is very small and it was found that it does not 
affect the main conclusions previously published in the literature. 

Theorem: When 20.005 msL cd −> and 25.0 mpL cd −< [see Eq. (10)], the function 

( ) 0F m =  has a unique solution m between 0 and 1. 

Proof: Since a  and b  satisfy Eq. (21), when 20.005 msL cd −> and 25.0 mpL cd −< , the 

inequalities defined by Eq. (18) are true (i.e. ( )0 0F > and ( )1 0F < ). Hence, since ( )F m  
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defined by Eq. (15) is a continuous function of m , Bolzano’s theorem [9] indicates that the 
equation ( ) 0F m =  has at least one solution m  between 0 and 1. 

To prove that there is only one solution for ( ) 0F m = , we consider the derivative of 

( )F m  given by 

 
( )
( )

( ) ( )/
2

1 / 1 ln 10 1
1

.0
p s p m a b

L C L LdF
dm bm m C

−
 − = −

+ −  
       (22) 

In Eq. (22) the second summand (the right term including the operation minus) is always 
negative, and, if / 1s pL L ≥ , the numerator of the first summand (left term) is also non-

positive, in such a way that we can conclude that 0dF
dm

<  for any m  between 0 and 1, and 

hence ( )F m  is a strictly decreasing function of m . Thus, if / 1s pL L ≥ , ( ) 0F m =  has only 

one solution (remember that ( )0 0F > and ( )1 0F < , and ( )F m  is a continuous function). 
For the alternative case, / 1s pL L < , we need to consider the second order derivative of 

( )F m , which is given by 

 ( )
( )
( )

( ) ( )
2

/2
2 3

1 / 12 1 [ ln 10 ] 1
1

.0
p s p m a b

L C L Ld F C
bdm m m C

−
 ⋅ − = − − − ⋅ ⋅

+ −  

⋅
    (23) 

When / 1s pL L < , the first summand (left term) in Eq. (23) is negative, and, bearing in 
mind that the second summand (the right term including the operation minus) in Eq. (23) is 

also always negative, we can state that 
2

2 0d F
dm

< , and therefore, dF
dm

 is a strictly decreasing 

function of m . Now, if we assume ( )0 0dF
dm

≤ , we must conclude that 0dF
dm

<  for any m  

between 0 and 1, because dF
dm

 is a strictly decreasing function of m , which implies that 

( ) 0F m =  has a unique solution m  between 0 and 1 (from the hypothesis of the theorem, 

( )0 0F > , ( )1 0F < , and ( )F m  is a continuous function). Alternatively, if we assume 

( )0 0dF
dm

> , it must be true that ( )1 0dF
dm

< , because otherwise we would conclude that 

( ) 0dF m
dm

>  for any m  between 0 and 1 since dF
dm

 is a strictly decreasing function of m , 

resulting in that ( ) 0F m =  will have no solution for m  between 0 and 1, which is in 

contradiction with the fact that ( ) 0F m =  has at least one solution m  between 0 and 1 

(Bolzano’s theorem). Therefore, if ( )0 0dF
dm

> , it must be concluded that ( )1 0dF
dm

< , and 

Bolzano’s theorem [9] can be used again to state that there exists at least a value *m  between 

0 and 1 such that ( )* 0dF m
dm

= . Hence, dF
dm

 is positive for m  between 0 and *m , and dF
dm

 is 
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negative for m  between *m  and 1 since dF
dm

 is a strictly decreasing function of m . In this 

situation we have that ( )F m  strictly increases for m  between 0 and *m , and then strictly 
decreases for m  between *m  and 1. Thus, remembering that from the hypothesis of the 
theorem ( ) F m  is a continuous function with ( )0 0F >  and ( )  1 0F < , we can conclude that 

( ) 0F m =  has a unique solution for m  between *m  and 1, and hence ( ) 0F m =  has an 

unique solution m  between 0 and 1 since ( ) 0F m =  has no solution for m  between 0 and 

*m , concluding the proof of the theorem. 

3. Improved methods to find the solution for F(m) = 0 

Now the problem is how to find the unique solution for ( ) 0F m =  [Eq. (15)], under the 

constraints 20.005 msL cd −> and 25.0 mpL cd −< [Eq. (10)]. In CIE Publication 191:2010 
[3], a simple fixed-point iteration method was suggested for this purpose. Let 

 ( ) ( )10 mesg m a b log L m= + ⋅       ,  (24) 

where, ( )mesL m  is defined by Eq. (5). Thus, the fixed-point iteration method [7] is equivalent 
to the iteration (see Eqs. (11) and (12)): 

 ( )1 , for 0, 1,n nm g m n+ = = …  (25) 

If the method converges to a limit *m , then we have 

 ( ) ( ) ( )* *
1lim lim lim .n n nn n n

m m g m g m g m+→∞ →∞ →∞
= = = =  (26) 

Hence, * m  is a fixed point of the function ( )g m  and that is why the iteration algorithm in 
[3] is also called a fixed-point iteration method. It was found that this fixed-point algorithm 
converges very fast for small values of the ratio /S P . However, for large values of the ratio 
(e.g., / 19S P = , 3.7pL = ), this method does not converge after 100 iterations [ 510ε −= , see 
Eq. (13)]. Though how large the ratio /S P  can be is debatable, this example shows that, at 
least from a theoretical point of view, the fixed-point iteration method may converge very 
slowly or may not converge at all. To find the root of the function ( )F m , other numerical 
methods [7], for example, the Bisection and Newton methods, can be also considered. The 
Bisection method always converges, but it has a low convergence rate in general. The Newton 
method, when it converges, has a very fast convergence rate. However, the Newton method 
may not converge if the initial guess is far away from the true solution. Hence, we have 
designed a hybrid method, named the Bisection-Newton method, because it is based on the 
Bisection and the Newton methods, and we propose it for optimal solution of ( ) 0F m = . The 
Bisection-Newton method not only always converges (similar to the Bisection method) to the 
unique solution for any initial guess between 0 and 1, but also converges very fast (similar to 
the Newton method). For completeness, the next subsections detail the algorithms 
corresponding to the Bisection, Newton, and Bisection-Newton methods, respectively [7]. 

3.1 The Bisection method 

Initial step: 50, 0, 1, 10 .k kk a b ε −= = = = Then repeat the following steps until 

1  k km m ε+ − ≤ : 
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1)     ( ) / 2k k km a b= +  

2) if ( )kF m ε≤ , stop, km  can be considered as a solution. 

3) if ( ) 1 1; ;0 ,    k k k k kF m a m b b+ +> = =     

4) if ( ) 1 1; ;0 ,    k k k k kF m a a b m+ +< = =     

3.2 The Newton method 

Initial step: 5
00, 0.5, 0, 1, 10 .k kk m a b ε −= = = = = Then repeat the following step until 

1  k km m ε+ − ≤  or ( )kF m ε≤ : 

 ( )

( )
1

k
k k

k

F m
m m

dF m
dm

+ = −   

3.3 The Bisection-Newton method 

Initial step: 5
00, 0.5, 0, 1, 10k kk m a b ε −= = = = = . Then, repeat the next steps 1-2 until 

1  k km m ε+ − ≤  
Step 1: 

1.1) if ( )kF m ε≤ , stop, km  can be considered as a solution. 

1.2) if ( ) 1 1; ;0 ,     k k k k kF m a m b b+ +> = =     

1.3) if ( ) 1 1; ;0 ,     k k k k kF m a a b m+ +< = =     
Step 2: 

2.1) Compute 

 
( )

( )
k

t k

k

F m
m m

dF m
dm

= −   

2.2) if tm  is inside the interval [ ]1 1,k ka b+ + , 1   k tm m+ = ; 

2.3) if tm  is not inside the interval [ ]1 1,k ka b+ + , then 

 1 1 1    ( ) / 2k k km a b+ + += +   
Firstly, we note that, similar to the Newton method, the Bisection-Newton method only 

needs to compute the function ( )kF m  and its derivative ( )k
dF m
dm

 once per iteration. 

Secondly, the length of the interval [ ],k ka b  for the Bisection-Newton method decreases as 
in the Bisection method [7] from 2.2) and 2.3) in Step 2. Thirdly, the above method mainly 
uses the Newton iteration (see 2.1) and 2.2) in Step 2). However, when the Newton iteration 
does not generate a good estimation (see 2.2) in Step 2), the method switches to the Bisection 
method (see 2.3) in Step 2), which is the reason the method is called the Bisection-Newton 
method. Finally, the Bisection-Newton iteration generates the sequence    km  and the interval 
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end point sequences    ka  and    kb . As discussed above, we know ( )0 0F >  and ( )1 0F < . 
Thus, these three sequences satisfy the condition that km  is always inside the interval 

[ ], , ( ) 0k k ka b F a >  and   ( ) 0kF b < . 

In addition, the length of the interval [ ],k ka b  is decreasing in the Bisection-Newton 
method. Thus, it is expected that the Bisection-Newton method will converge, which is the 
merit of Bisection method [7], and when it converges, it will converge quadratically, which is 
the merit of the Newton method [7]. In summary, the Bisection-Newton method is better than 
the original Newton method, since the latter may not converge for certain initial guesses, and 
is also better than the Bisection method, since the Bisection method has a low convergence 
rate. The performance of the Bisection-Newton method together with the fixed-point method 
(i.e. the method which has been recommended by CIE in [3]), the Bisection method, and the 
Newton method will be discussed in the next section. However, we have to note that the 
Bisection method is simpler than the Newton and the Bisection-Newton methods since it only 
needs to compute the function ( )kF m  once per iteration. The fixed-point iteration method, 

needs to compute the function ( )g m  defined by Eqs. (24) and (5) once per iteration. 

4. Comparative performance of different computational methods 
In CIE Publication 191:2010 [3], performance examples were given in terms of the photopic 
luminance,   pL , and the ratio of scotopic to photopic luminance, /S P . The combination of 

  pL  and /S P  must satisfy Eq. (10), with ( )/s pL S P L= . Here we have selected 25 values 
for   pL , which were sampled from 0.1 to 4.9, in steps of 0.2. With regard to the range of 
values for the ratio /S P , in [3], CIE considered values from 0.25 to 2.75 in steps of 0.1. 
However, Nizamoglu et al. [10] investigated this ratio for nanocrystal hybridized LEDs, and 
reported that it can achieve values as high as 5.15. Hung et al. [11] considered the theoretical 
spectral radiance of a light source as a vector with 81 components sampled from 380 nm to 
780 nm at 5 nm intervals, and then investigated the maximum luminous efficiency of 
radiation for a certain level of color rendering index and fixed correlated color temperature. 
Using a similar theoretical strategy, we considered how large the ratio /S P  can be, and we 
found that it can be greater than 50. So we decided to choose values of the ratio up to 50 as a 
theoretical limit although we recognize that, for currently available light sources, /S P  
values higher than 5.15 do not exist. Therefore, we have decided to sample the ratio /S P  
starting from 0.1 to 2 in steps of 0.05, and then from 3 to 49 in steps of 2. Thus, altogether we 
selected 63 values for the ratio /S P . Hence, in overall, from all selected values of   pL  and 

/S P , we have a total of 1575 (25 x 63) points. A fixed convergence tolerance 510ε −=  was 
chosen to compare the performance of our four tested methods (fixed-point, Bisection, 
Newton, and Bisection-Newton) for these 1575 points. For a particular method, the lower the 
number of iterations it takes for convergence, the better the method performs. The maximum 
number of iterations was set as 200; that is, all methods are automatically stopped after 200 
iterations, though the convergence rule is not satisfied, and in this case, they are considered as 
divergent. 

                                                                                          Vol. 25, No. 15 | 24 Jul 2017 | OPTICS EXPRESS 18373 



 

Fig. 3. Contour plots with the number of iterations for convergence as a function of   pL  and 

  /S P  (in decimal logarithmic scale), considering four computational methods. Color scales 
for each one of these four plots are different (see vertical bars on the right of each plot) 

Figure 3 shows the performances of the four methods in terms of the number of iterations 
used for each of the 1575 combinations of the photopic luminance   pL  and ratio /S P . A 
decimal logarithmic scale was employed in the charts in Fig. 3 for /S P , to show more detail 
of the performance for the usual values for current light sources ( /S P  below 0.75 log units) 
without discarding potential higher theoretical values. The numbers in the vertical colour bars 
on the right of each of the four charts in Fig. 3 indicate the number of iterations needed for 
convergence, and it is important to note that they are different for each one of the four charts. 
Using the fixed-point iteration method [3] [Fig. 3(a)] it can be seen that for small values of 
the ratio /S P  the method converges fast for all photopic luminances   pL , and also it 
converges fast for small values of photopic luminance   pL  and moderate-high /S P  ratios. 
However, when the ratio /S P  and photopic luminance   pL  both become large, the number of 
iterations for convergence in the fixed-point iteration method considerably increases, and for 
the highest values the method does not converge after 200 iterations. The Bisection method 
[Fig. 3(b)] always converges, and it takes approximately 17 iterations for all combinations of 
values of photopic luminance   pL  and ratio /S P . In general, the Newton method [Fig. 3(c)] 
converges very fast, except for very small values of the ratio /S P  and moderate-large   pL  
values, where this method may not converge after 200 iterations. Finally, as expected, we can 
see that the Bisection-Newton method [Fig. 3(d)] always converges, like the Bisection 
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method, and it converges very fast (8 iterations in the worst case), like the Newton method. 
However, we have to note that the Bisection-Newton methods takes more CPU time per 
iteration than that used by the Bisection method per iteration (see Table 1 below). 

Figure 4 shows another comparison of the relative efficiency (i.e. number of iterations to 
achieve convergence using a tolerance 510ε −= ) of the four tested methods, assuming a 
specific value for the photopic luminance, 2.1pL = . Figure 4 plots the number of iterations 
needed for convergence in each method as a function of the ratio /S P . It can be seen that the 
fixed-point method (black curve) takes the lowest number of iterations among the four tested 
methods for values of the /S P  ratio smaller than 3. However, when the ratio /S P  is greater 
than 12, it takes the highest number of iterations among the four methods and gradually, it 
does not converge after 50 iterations when the ratio /S P  is greater than 25. Thus, the fixed-
point method must not be underestimated because the values of 12 or 25 for the /S P  ratio 
only make sense from a theoretical point of view (currently available light sources have /S P  
ratios below approximately 5 [10]). For the Bisection method (red curve), about 17 iterations 
are necessary for convergence for nearly all values of the ratio /S P . The performance of the 
Newton (green curve) and Bisection-Newton (blue curve) methods is almost identical when 
the ratio /S P  is greater than 5. However, when the ratio /S P  is smaller than 5, these two 
methods perform differently: Specifically, the Newton method took 51 iterations when the 
ratio /S P  was equal to 0.5, and it didn’t converge after 200 iterations when the ratio /S P  
was below 0.35. The proposed Bisection-Newton method (blue curve) took not more than 6 
iterations for all values of the ratio /S P . 

 

Fig. 4. Number of iterations needed for convergence ( 510ε −= ) for each one of the four 
tested methods as a function of the ratio /S P , assuming a constant photopic luminance, 

2.1pL =  

Similarly, assuming a ratio / 1.8S P = , Fig. 5 plots the number of iterations needed for 
convergence in each method, as a function of the photopic luminance, pL . Now, we can see 
that the four methods converge, the Bisection and fixed-point methods taking the highest and 
lowest number of iterations for convergence, respectively. The Newton and Bisection-Newton 
methods perform similarly for pL  values smaller than 0.6, but the Bisection-Newton method 
is better for larger pL  values. Note that we deliberately selected this small ratio / 1.8S P = , 
which may be typically found in currently available light sources, in order to show that the 
fixed-point method [3] is still the best for some small /S P  ratios. 

While Figs. 4 and 5 only illustrate examples that allow for easy comparison of the relative 
performance of the four methods shown in previous Fig. 3, it can be added that convergence 
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must be the main goal of any method, and also that the number of iterations considered in 
Figs. 3-5 is not the only criterion we may consider to evaluate the merit of these methods. 

 

Fig. 5. Number of iterations needed for convergence ( 5ε 10−= ) for each one of the four 
tested methods as a function of pL , assuming a constant value for the scotopic/photopic ratio, 

S / P 1.8=  

For example, the simplicity of a method, partly related to the time spent in the 
computation, is also a further criterion which may be considered. 

As an example, which may be also useful to readers interested in checking the four 
methods described in section 3, for each of the these methods Table 1 shows the results found 
for m  and mesL , as well as the number of iterations necessary for convergence with 5ε 10−= , 
and the computational time using a typical desktop computer, for a common light source with 

2.1 ; / 1.8pL S P= = . It can be seen in Table 1 that the values of m  and mesL  from the four 
methods are very similar, and the fixed-point method provided the best results from the point 
of view of the number of iterations and the computation time in seconds (CPU (s)), closely 
followed by the Bisection-Newton method. This result confirms that, in more practical 
situations (i.e. low /S P  values) we cannot underestimate the fixed-point method currently 
recommended by CIE [3]. In any case, we can retain our recommendation of the Bisection-
Newton method, bearing in mind that it guarantees a fast convergence for a wide range of 
input values, while the fixed-point method may not converge for high (currently unpractical) 
values of the /S P  ratio. Table 1 also lists, in the last column, the CPU time used per 
iteration for each method. It can be seen that, for each iteration, the fixed-point method took 
the most CPU time compared with other methods and the Bisection method took the least. 
The Bisection-Newton method took twice that used by the Bisection method per iteration. 

Table 1. Results found for the four methods described is section 3, assuming 

2.1; / 1.= =pL   S P    

 
m  mesL  

Number of 
iterations CPU (s) used 

CPU (s) per 
iteration 

Fixed-point 0.880298 2.187075 5 4.09E−05 0.82 E−05 

Bisection 0.880302 2.187072 17 6.74E−05 0.40 E−05 

Newton 0.880298 2.187075 9 5.27E−05 0.59 E−05 

Bisection-Newton 0.880298 2.187075 6 4.79E−05 0.80 E−05 

Furthermore, we note that each of the four methods converges very fast for the example 
shown in Table 1 but, on repeating the calculations, the CPU time varies. To overcome this 
we repeated the calculations 1000 times and we quote the average CPU time in Table 1. 
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5. Conclusions 

We first investigated the parameters a  and b  for the CIE MES2 model [3]. It was found that 
from a  and b  values defined in Eq. (7), the model ( ) 0F m =  [Eq. (15)] may have no 
solution or multi-solutions. Hence new values for parameters a  and b  were proposed in Eq. 
(21). Under values in Eq. (21), it was shown that the model ( ) 0F m =  has a unique solution 
m  between 0 and 1, for the photopic luminance   pL  and the ratio /S P  satisfying condition 
in Eq. (10). Then four methods, including the fixed-point iteration method recommended by 
the CIE Publication 191:2010 [3], the Bisection method [7], the Newton method [7], and the 
Bisection-Newton method, originally proposed by us, were used to solve the MES2 model, 
( ) 0F m = . It was found that the Bisection method converges as long as the value of   pL  and 

the ratio /S P  satisfy the condition in Eq. (10) and took approximately the same number of 
iterations for convergence for any ratio /S P  and photopic luminance   pL . For the fixed-
point method, it may converge very fast for small values of the ratio /S P , and it is better 
than all the other methods for ratios /S P  smaller than about 3, which is the case for most 
light sources currently available, but it may diverge for large values of the ratio /S P . The 
Newton method may diverge for small values of the ratio /S P  and it converges for larger 
values. When it converges, it converges faster than the Bisection method. Finally, the 
Bisection-Newton method always converges, like the Bisection method, and it converges very 
fast, like the Newton method. 

While convergence can be considered as the most important property of all the test 
methods, simplicity of the algorithms (e.g. computational time) may be also considered as an 
added value. Thus, for currently available light sources with an /S P  ratio less than 5, the 
fixed-point iteration method recommended by CIE [3] can still be used. However, for 
simplicity, the Bisection method can also be used since it is simpler and convergent in any 
case. In addition, we feel that the Bisection-Newton method should be used for the CIE 
MES2 model [3] since it converges for all cases, and it is the best method for larger /S P  
ratios and the second best method for smaller /S P  ratios. 
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